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Abstract

Let z = (zx,z2,... ,z,,) be a vector of real numbers, z is said to possess an integer

relation if there exist integers a_ not all zero such that alz1+a2z2+...+a,_z,_ = 0. Beginning

ten years ago, algorithms were discovered by one us which, for any n, are guaranteed to

either find a relation if one exists or else establish bounds within which no relation can exist.

One of those algorithms has been employed to study whether or not certain fundamental

mathematical constants satisfy simple algebraic polynomials.

Recently one of us discovered a new relation-finding algorithm that is much more ef-

ficient, both in terms of run time and numeric precision. This algorithm has now been

implemented on high-speed computers using multiprecision arithmetic. Using these pro-

grams, several of the previous numerical results on mathematical constants have been

extended, and other possible relationships between certain constants have been studied.

This paper describes this new algorithm, summarizes the numerical results, and discusses

other possible applications.

In particular, it is established that none of the following constants satisfies a simple,

low-degree polynomial: _/ (Euler's constant), log% log_r, pl (the imaginary part of the

first zero of l_emann's zeta function), log Px, ((3) (RJemann's zeta function evaluated at 3),

and log ((3). Several classes of possible additive and multiplicative relationships between

these and related constants are ruled out. Results are also cited for Feigenbaum's constant,

derived from the theory of chaos, and two constants of fundamental physics, derived from

experiment.
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Introduction

The problem of finding integer relations among a set of real numbers was _rst studied by

Euler, who showed that the Euclidean algorithm, when applied to two real numbers, either

terminates, yielding an exact relation, or else produces an infinite sequence of approximate

relations. The generalization of this problem for r_ > 2 has been attempted by Jacobi,

Perron, Bernstein, Poincare, and Brun, among others. However, none of their algorithms

has been proven to work for r_ > 3, and numerous counterexamples have been found. In

the case where the entries of a vector z have no exact integer relations, some of these

algorithms provide a sequence of lattice approximations that converges to the line between

the origin and z in the angular sense, but none produces a sequence that converges to the
line in the absolute distance sense.

A breakthrough in this area occurred in 1979 with the discovery by one of us and 11.

Forcade of a recursive algorithm that is guaranteed to find an integer relation for a vector

z of any length n if a relation exists [8, 9]. If the vector z does not satisfy an exact relation,

then this algorithm produces a sequence of lattice approximations that converges to the

line in the absolute distance sense, not just in the angular sense. Further, this algorithm

provides a means of establishing firm lower bounds on the size of any possible relation.

Later some non-recursive algorithms were discovered that share these properties [i0]. It

has been established that these algorithms have polynomial complexity [15].

An unfortunate feature of the above algorithms that severely limits their practical ap-

plication is that they require enormously high numeric precision (and correspondingly long

run times) in order to obtain meaningful results. For example, one of the calculations cited

in [2] established that Euler's constant 7 cannot satisfy any algebraic polynomial of degree

eight or less and with coefficients of size 10 s or smaller. This calculation, which employed

one of the above algorithms, required 6,144 digit precision and two hours CPU time on

a Cray-2 supercomputer. Such huge precision requirements utterly rule out the usage of

these algorithms to study numbers obtained from physical measurements. Furthermore,

even in cases where input values can be obtained to very high precision (such as math-

ematical constants), the computational expense of such hlgh-precision calculations limits

the degree and size of relations that can be practicalJy explored.

Fundamental arguments indicate that such heroic levels of numeric precision should not

be necessary in order to resolve the question of whether or not an integer relation exists

among a set of real numbers. For example, let z be a unit vector in R '_. Then consider the

set of sums {E aizi I ai E [-10 a, 10a]}. It is easy to show that except for a set of z vectors

of small measure, the density of these sums in the vicinity of zero is of the order of I0 _(n-l).

Thus if the vector z is specified to dn digits or so, and if calculations are also performed

to this precision, then one would not expect "at random" to find any of these calculated

sums near machine zero (i.e., 1D-an), unless of course that sum is exactly zero. When this

reasoning is applied to the size of the bounds found in the calculation mentioned above, it

follows that 100 digit arithmetic should in theory be more than sufficient to obtain those

results. Therefore, it is plausible that algorithms much more efficient in their numeric



precision requirement should exist. Since computer run time is roughly proportional to

rn log m, where rn is the number of words of precision, it is reasonable to expect that the

run time of such algorithms would be corresponding lower.

One step in this direction was reported by Kannan and McGeoch [14], who utilized the

Lovasz basis reduction algorithm to obtain bounds on any polynomial that could be satisfied

by Ir + e or _r - e. Their technique was efficient enough that it could be run on a VAX

11/780. Recently one of us discovered a new relation-finding algorithm, which includes

guarantees of finding relations and establishing bounds similar to the previous algorithms,

but with vastly improved run time and numeric efficiency [11, 12]. For example, using this

algorithm, a bound on degree eight polynomials for 7 similar to that mentioned above has

been obtained with only 186 digit arithmetic, instead of 6,144 digit arithmetic. Further,

this run required only 23 seconds CPU time instead of two hours. The ratios of both

numeric precision and CPU time are over 300 to one.

This paper gives details of the implementation of this new relation-finding algorithm

and gives the results of computations that employed this technique to search for relations

between certain constants of mathematics. While no exact relationship was discovered

in this process, bounds were obtained on the sizes of possible relations that are large

enough to rule out any simple, low-degree relations. Some results are also cited for con-

stants known only to modest precision, such as Feigenbaum's constant (from the theory

of chaotic behavior) and two of the fundamental constants of physics. Distinct versions

of these programs were run both on a Cray-2 supercomputer operated by the Numerical

Aerodynamic Simulation System at NASA Ames Research Center and on a Silicon Graph-

ics IRIS 4D workstation. By repeating equivalent problems on such dissimilar systems,

using distinct mnltiprecision routines, a high degree of confidence can be attached to the

computed results.

The Partial Sum of Squares (PSOS) Relation-Finding Algorithm

The new relation-finding algorithm, which wiI] hereafter be referred to as the PSOS

algorithm, can be stated as follows [11, 12]. Let nint(t) denote the nearest integer to

(for the case of half-integer values, the integer with the smaller magnitude is taken). For

a given vector z = (zx, z2,... ,zn), let Sk(z) denote the partial sum of squares of z:

7t

S_,(z) -- _ z_, 1 <:k <:_
j=k

Given an arbitrary real row vector z of length n, set X0 = z and A0 = I,,. Successive

values of Xk and At, are defined by Xk+l -- XI, B_ 1 and Al,+l : BhAk, where Bt, and B_ "1

are computed with the following four-step procedure:

Step 1 (Sign): Let XI, -- (Zl,X2,-.., xr,). If any zj : O, then terminate. Otherwise set the

diagonal matrix T_j = sign(zj), and set y = zT. Note that T -1 = T.



Step 2 (Sort): If any !1_--- yj, i _ j, then terminate. Otherwise define P to be the unique

permutation matrix such that z = yP, where zl > z_ > ..- > z,, > 0. Note that P-1 = pt.

Step 3 (Reduce): Calculate the n x n matrices D and E = D -1 from

0 i<j

1 i=j
-" i

Dij zj Y_ Dihzh
nint

i>j+l

1 i=j
Nit =

- E_hDh_ i > j + 1
k=j+l

Step 4 (Restore): Set B_ -_ = TPD-* and Bk = DP-*T.

If this algorithm terminates in step 1, then the j-th column of A_ 1 is a relation for z.

If this algorithm terminates in step 2, then the difference between the i-th and the j-th

columns of A_ 1 is a relation for z. If the algorithm has not terminated in k iterations,

then it has been established [11, see also 10] that the EucLidean norm of any relation R for

z must satisfy

IRI > n, ,
- Irow AjQI

where Q, = I,_ - ztz/(zzt). The first "max" is included because the quantity inside the

brackets does not necess_ily decrease monotonically with successive iterations of the al-

gorithm.

Multiprecision Techniques

Although the precision requirement of the PSOS algorithm is much less than for pre-

vious versions, it stRl requires multiprecision arithmetic in step 3 above to obtain strong

results for n gzeater than three or four. For this purpose a package of high-performance

multiprecision arithmetic routines was employed. These routines are similar to those de-

scribed in detail in [1] and [2]. The main difference in the routines used for this application

is the incorporation of an even faster complex FFT _outine [3] at the heart of the mul-

tiprecision muitipLication procedure. This new FFT, which employs a radix-4 version of

an algorithm suggested by Swarztrauber [19], is presently the fastest known technique for

performing power-of-two FFTs on the Cray-2. In fact, this routine been adopted by Cray

Research, Inc. as their Library one-dimensional FFT routine for the Cray-2, after coding

some loops in assembly to further boost performance. Unfortunately Cray's Library ver-

sion failed to preserve a key property essential for multiprecision computation, namely the
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ability to perform an FFT for any power-of-two size up to and including the size for which

it is initialized. For this reason the Fortran version of this FFT routine was employed for

the Cray-2 calculations.

As will be discussed later, the calculations described below have been duplicated on

a Silicon Graphics IRIS 4D workstation as a validity check. On this system a somewhat

modified multiprecision package was employed. It differs from the Cray-2 version mainly in

the method for releasing carries (a scalar algorithm was employed) and in the FFT routine

(a radix-2 version of Swarztrauber's FFT algorithm was used). These changes, together

with the fundamental hardware differences in the floating-point operation of these two

systems, resulted in differences in the trailing digits of the results of some operations.

The techniques used to compute the mathematical constants, including the evaluation

of logarithms and exponentials, are generally the same as was described in [2], and so will
not be discussed in detail here. It will suffice to mention that most of these calculations

employed the quadratically and quartically convergent algorithms recently discovered by

the Borweins [4, 5, 6]. The constants calculated for the present experiments that were

not discussed in [2] include ph (the imaginary parts of the zeroes of Riemann's zeta func-

tion), _(3) (Pdemann's zeta function evaluated at 3), and Feigenbaum's constant. ¢(3) was

computed here using the formula

71r3 _ 1¢(3) -- 18--'0- 2 = kZ(e 2;'s" - 1)

The constants Pk were not computed by the authors, but instead were obtained from

Andrew Odlyzko of AT&T Bell Laboratories, who has performed extensive computations

with these numbers [16]. The value of Feigenbaum's constant (4.46692016609106) was

obtained from [17], which is due to a calculation by Grossmann and Thomae.

As with previous relation-finding algorithms, tests for zero and tests for equality must

be handled carefully, or else actual relations may be missed and false relations may be

detected. Since equality can be checked by subtraction, each of these reduces to a test for

zero. The multiprecision programs checked for zero by testing for numbers whose exponent

is less than 2 - 0.99 * rn, where rn is the number of mantissa words of precision. Since the

radix used was 10s, this corresponds to a decimal exponent of six times this value. This

tolerance was found to be generous for this application, since in test cases where an actual

relation was recovered, the actual exponent of a detected zero was never more than 2 - rrt

and was usually -m or 1 - m.

Reliability of the Calculations

Whenever results of this sort are cited, the question of their reliability arises. There are

of course many possible sources of error in these calculations. There could be programming

errors in implementing the PSOS algorithm. There could be programming errors in either

the basic multiprecision arithmetic routines or in the higher level routines, such as those

that evaluate z" or extract natural logarithms. In spite of the high levels of precision



employed,subtlenumericalerrorscouldhaveoccurredthat couldhave caused the programs

to miss an actual relation. Compiler errors could have generated incorrect machine code.

Finally, there is always the possibility that hardware errors have occurred, nullifyin 8 the

results.

None of these possibilities can be absolutely ruled out, and thus these calculated results

do not enjoy the certainty of a mathematical proof. However, measures have been taken

to reduce the uncertainties inherent in these calculations to negligible levels. The most

significant measure of this sort was to perform these calculations on two completely different

computer systems: a Cray-2 supercomputer and a Silicon Graphics workstation. The one is

a high-speed vector machine, while the other is a much simpler scalar system. Obviously the

Fortran compilers for the two systems are completely different. In addition, as was briefly

mentioned earlier, different programs were employed for the IRIS calculationsthan on the

Cray-2. The fundamental floating-point hardware differences in the machines, together

with the program differences, resulted in discrepancies in the trailing digits of results of

multiprecision operations. Just as performing a single precision calculation on different

computer systems with different floating-point hardware will disclose the extent to which

numerical uncertainties are significant, by a similar argument performing multiprecision

calculations on different systems wiU disclose the extent to which the results are numerically

reliable. Parthermore, such duplicated calculations can effectively eliminate the possibility

that a significant hardware or compiler error occurred in either calculation.

In addition to running the program on different computer systems, the numerical stabil-

ity of these calculations was monitored by printing at each iteration the minimum difference

in step 2 above. In the normal running of this algorithm, this minimum difference gradually

decreases until a relation is recovered, at which time it drops precipitously to near machine

zero (i.e., about 10-s"). The possibility that an actual relation could be missed because of

a faulty zero test can thus be eliminated. The last measure taken to insure the reliability of

these results was to run the final versions of the programs on numerous test cases, including

several where actual relations are known to exist. In every case where an actual relation

existed, the programs either recovered the relation or else exhausted precision before the

relation bound exceeded the norm of the actual relation. In each case where precision was

exhausted before the norm of an actual relation was achieved, repeating the test run with

increased precision successfully recovered the desired relation.

Computational Results

The results of these calculations axe listed in the table 1. Vectors of the type (1, c_, a2,

.. ", a_-l) in this list are attempts to discover algebraic numbers of degree n - 1. Several

of the results in the table axe not related to polynomial relations. Three consist entirely

of natural logarithms of various constants. If a relation had been found between these

logarithms, then a multiplicative relation would have existed between the arguments of the

logarithm calculations.

The bounds listed are the minimum Euclidean norms of any integer relation that could

6



be satisfied by the n-long z-vectors in the list, based on both the Cray-2 and IRIS 4D

calculations. In each of these cases, the bounds and other information in the output of

the Cray-2 and IRIS runs were identical except near the end, where numerical differences

began to alter such aspects of the calculations as the sorted order of the y vector. The

bounds listed in the table are the common bounds obtained by both programs up to the

point where divergence occurred. After divergence, the separate programs each calculated

higher bounds than those listed in the table. It might be noted that each of these runs

terminated by recovering a "relation" when precision had been exhausted. The "relations"

produced in such cases can be dismissed because of their very large norms, and because

the minimum different statistic mentioned above did not drop precipitously as it should

for a real relation.

The results listed in the table for Feigenbaum's constant demonstrate that some results

can be obtained with the PSOS algorithm even if the input numbers are only known to a

modest level of precision. This result suggests that these techniques might be applied to

studying empirical constants, such as the fundamental constants of physics [7]. Unfortu-

nately, it appears that physical constants are not yet known to sufllcient precision to be

able to obtain strong bounds with the PSOS algorithm.

In fact, there is an interesting history of claims of relations between certain fundamental

constants of physics and mathematical constants. As early as 1957, I. J. Good [13] noted

that the proton-to-electron mass ratio M - 1836.15152 was close to 6_rs. When the PSOS

algorithm is applied to the vector (log M, log 2, log 3, log _r), indeed Good's relation is

recovered by the algorithm as an intermediate result. Unfortunately, M is now known

precisely enough to rule out Good's formula. Similarly, A. Wyler noted in 1969 [18] that

the fine structure constant a -1 -- 137.03604, was close to 32_rS/9. (15/2_r) 1/4. When

the PSOS algorithm is applied to the vector (log a, log 2, log 3, log 5, log lr), Wyler's

relation is recovered as an intermediate result. In this case, however, the PSOS algorithm

produces other relations of comparable complexity with even better accuracy. One of these

is a -s -- 150_r(6S/52_rS) s. Indeed, these results indicate that considerable caution should

be employed in any attempt to find relationships involving empirical constants using purely

numerical techniques.

The computer runs cited in the table provide an interesting comparison in performance

between one of the world's most powerful supercomputers and a personal workstation.

Comparing the polynomial cases for n : 9, the average CPU time for the Cray-2 was

462 seconds (on one processor), corresponding to a performance rate of approximately 43

million floating-point operations per second (MFLOPS). The IRIS 4D runs on these same

cases required an average of 31,700 seconds, or about 0.62 MFLOPS. The ratio of these

performance rates is approximately 69.

Conclusions

A new algorithm for recovering integer relations among a set of real numbers has been

implemented in computer programs and has been applied to search for relations between
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fundamental constants of mathematics. No exact relation was found in this exercise, but

strong bounds were obtained on the minimum size of any possible relation. This new

algorithm requires substantially less numeric precision than previous algorithms for this

purpose, and some results can even be obtained with input values specified to only a mod-

est level of precision. This technique raises the possibility that some clay new facts of

mathematics or physics may be discovered by an application of purely numeric techniques,

although great caution must be employed in such exercises. If nothing else, such calcula-

tions can serve as a guide to theoreticians -- once large minimum bounds are obtained on

the size of possible generic relationships, it indicates that exact relationships probably do

not exist, and other more productive avenues of research should be explored instead.



z Vector
1, "7, "72, .. ", "7r_--1

1, log'7, log2"7 ,---, 1og'_-l'7

1, log _', log 2 _', "", logn-l_ "

1, Pl, Pl2, "-', p_,-1

1, logpl, log2pl, ..., log 'L-1 Pl

Pl, P2, "'', P,'*

log Pl, log P2, "'", log p,,

I, ¢(3), ¢2(3),..., ¢n-1(3)

1, log ¢(3),log"¢(3), ...,log"-I ¢(3)

1, _', ¢C3), '7, log(2), Ir2,_.a,

'72, 'Ts, lr% _r2% _.'72

1, log ¢(3), log _', log 2, log 7,

loglog2, log3, log5, log7

1, F, F2, "-', F '*-1

1, log F, log 2 F, "", log '_-1 F

log F, log lr, log 2, log 3

Symbols:

'7: Euler's constant

n Digits Bound
9 768 9.2559 x1036

13 768 1.0417 × 1011

9 768 2.5175 x1037

13 768 1.9622 x1011

9 768 2.3232 x1037

13 768 1.0064 xl0 °9

9 768 9.6055 x1043

13 768 4.7194 x1014

9 768 2.5332 xl04s

13 768 1.2413 x1014

8 378 5.1278 × 1024

8 378 3.6408 x1025

9 768 2.0600 ×104T

13 768 5.3133 x1011

9 768 2.3691 xlO 3_

13 768 3.9526 x101°

12 768 7.3887 x1013

9 768 2.4536 ×1037

3 15 5.1789 x1003

4 15 3.3506 x1002

3 15 1.2339 x1003

4 15 9.1352 x1002

4 15 8.5550 x1002

pk: Imaginary part of the k-th zero of Riemann's zeta function

¢(3): Riemann's zeta function evaluated at 3

F: Feigenbaum's constant

Table 1: Computational Results Using the PSOS Algorithm
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